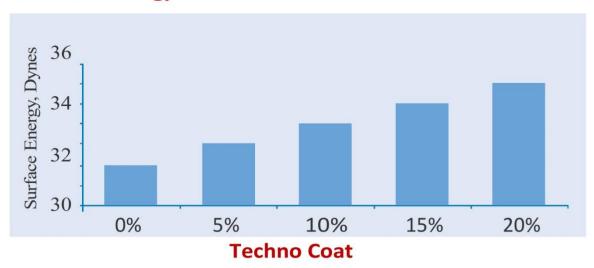

TECHNO COAT® WHITE PAPER

Improve Profitability, Productivity and Performance

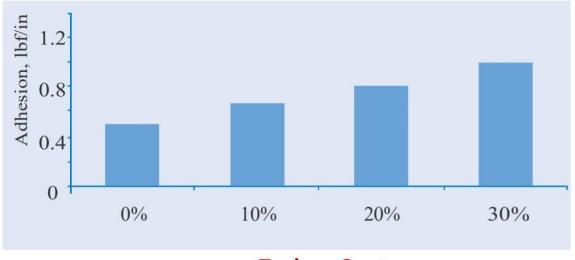
Replacing a portion of the resin with a calcium carbonate concentrate such as TECHNO COAT® can result in savings from 5 to 12% depending on percentage of concentrate used. Higher line speeds, increased outputs, better adhesion, easier converting, improved COF and printability, and better barrier are among the many performance improvements that are possible with the addition of TECHNO COAT®.

Product Description

TECHNO COAT® is 65-85% of a fine ground surface treated CaCO3 in suitable polyolefin carrier. They are specifically formulated for use with the wide range of polypropylene and low density polyethylene extrusion coating resins currently used in this demanding high temperature process. TECHNO COAT® can be blended into the process at levels ranging from 5-50%, depending on the needs and the application.


Extrusion Coating Processing

TECHNO COAT® concentrates can be added at levels from 5-50% via volumetric side feeders at the hopper or via gravimetric multi station systems. No changes in temperature profiles are required but optimized performance while maintaining adhesion may be possible with lower temperatures. Higher outputs and line speeds are often realized.


Physical Property Improvements

TECHNO COAT® improves coating adhesion to a variety of substrates, particularly flame-treated, clay-coated board without primer coating. Techno Coat also modifies the coating surface to increase surface energy, improving print quality. Improved sheet feeding and converting performance are often realized in addition to higher seal strengths. Mineral addition also improves barrier properties, reduces both the coating WVTR and OTR.

Surface Energy

Adhesion to Clay Carton Board

Techno Coat

Summary

- Provide raw material and energy cost savings
- Better adhesion and printability
- Extrusion coating goods containing GCC lower the overall carbon footprint of packaging
- Improved output rates and increased run times

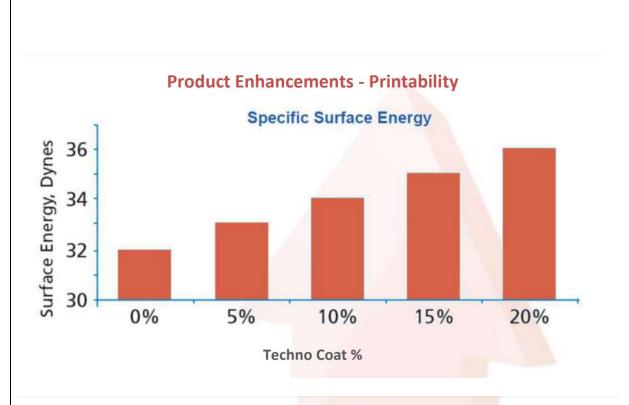
ECONOMIC BENEFITS

Application	m/y	Weight	Total Resin	Total (INR/y)	
		(gr/mg)	(tons/y)		
LDPE Extrusion Coating	378,000,000	21	7938	INR 714,420,000	
	INR 90,000				
	Techno Coat 01	INR 50,000			
% of Techno Coat 01 in the formulation for extrusion					
	Resin	10%	20%	24%	
	consumption				
	per year				
Raw material product mix	7,938	794	1588	1905	
Cost saving for resin only*		INR	INR 142,884,000	INR 171,460,800	
		71,442,000			
TECHNO COAT® 01 cost per		INR	INR 79,380,000	INR 95,256,000	
year		39,690,000			
Potential raw material saving		INR	INR 63,504,000	INR 76,204,800	
		31,752,000			
	% Saving	4%	9%	11%	

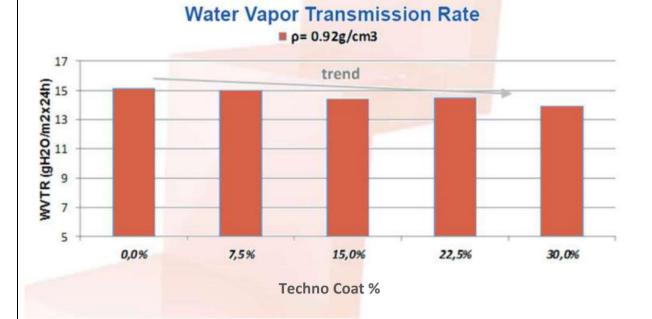
SUSTAINABILITY BENEFITS

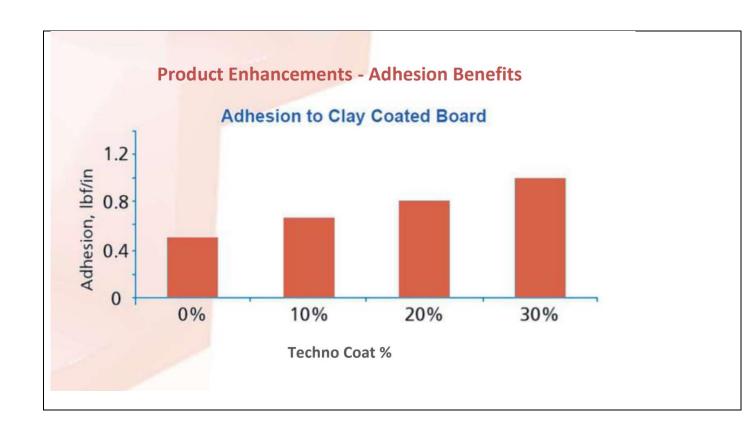
Carbon Footprint & Calcium Carbonate

Polymer Type	Abbreviation	CO2 Emissions (Kg/mt)	
Amorphous Polyethylene Terephthalate	PET	2,800	
High Density Polyethylene	HDPE	1,600	
Low Density Polyethylene	LDPE	1,700	
Polypropylene Homopolymer	PPH	1,700	
High Impact Polystyrene	HIPS	2,800	
General Purpose (Crystal) Polystyrene	GPPS	2,700	
Un-plasticised Polyvinyl Chloride	uPVC	1,800	
Calcium Carbonate Mineral Powder	CaCO3	75	


Application	m/y	Weight (gr/mg)	Total Resin (tons/y)	% LDPE		Factor LDPE (Kg/MT)		Total C02 Emission Today Situation (Kg)
LDPE Extrusion Coating	378,000,000	21	7,938	100%		1,700		13,494,600
								9.56%
Application	m/y	Weight (gr/mg)	Total Resin (tons/y)	% LDPE	% Techno Coat 01	Factor LDPE (Kg/MT)	Factor CaCO₃ (Kg/MT)	Total CO ₂ Emission with 7% of CaCO ₃ (Kg)
LDPE Extrusion Coating	378,000,000	21	7,938	90%	10%	1,700	75	12,204,675
								19.12%
Application	m/y	Weight (gr/mg)	Total Resin (tons/y)	% LDPE	% Techno Coat 01	Factor PP (Kg/MT)	Factor CaCO ₃ (Kq/MT)	Total CO ₂ Emission with 14% of CaCO ₃ (Kg)
LDPE Extrusion Coating	378,000,000	21	7,938	80%	20%	1,700	75	10,914,750
								22.94%
Application	m/y	Weight (gr/mg)	Total Resin (tons/y)	% LDPE	% Techno Coat 01	Factor PP (Kg/MT)	Factor CaCO₃ (Kg/MT)	Total CO ₂ Emission with 14% of CaCO ₃ (Kg)
LDPE Extrusion Coating	378,000,000	21	7,938	80%	24%	1,700	75	10,398,780

PROCESSING & IMPROVEMENTS


- Improved Output Rates
- Improved Mechanical Properties
- Raw Material Savings
- Increased Run Times
- Improved Economics
- Lower Carbon Foot Print


PRODUCT ENHANCEMENTS

- Dart Impact Tear Resistance
- Lower COF
- Better Sealing Properties
- Printability & Barriers
- Adhesion to clay-coated board
- Adhesion to Aluminium

CONCLUSION

- TECHNO COAT® improves coating adhesion to a variety of substrates, particularly aluminium foil and flame-treated, clay-coated board without primer coating.
- TECHNO COAT® also modifies the coating surface to increase surface energy, improving print quality.
- TECHNO COAT® enhances barrier properties, line speed, and anti-blocking effect.
- TECHNO COAT® offers raw materials, energy cost and carbon foot print savings